Monthly Archives: December 2017

Solving Large Dimensional CGE Models

‘Solving intertemporal CGE models in parallel using a singly bordered block diagonal ordering technique’, Economic Modelling, 2016, 52, 3-12.

The work introduces a direct ordering method that employs a special feature of an intertemporal Computable General Equilibrium (CGE) model to reorder its first-order partial derivative matrix into a Singly Bordered Block Diagonal (SBBD) form. The matrix can then be decomposed into LU form and solved in parallel. With this method, the numerical results  show a substantial advantage in computational time and memory use for parallel solutions of intertemporal CGE models in comparison to current serial solution methods. A solution for an intertemporal and regional model of the Vietnamese economy is provided as an example and a comparison across different methods.

PDF of the full original article: Click Here


Managing Risk and Increasing the Robustness of Invasive Species Eradication Programs

‘Managing Risk and Increasing the Robustness of Invasive Species Eradication Programs’,  Asia and the Pacific Policy Studies, 2015, 2(3), 485-493.

Invasive species eradication programs can fail by applying management strategies that are not robust to potentially large but non- quantified risks. A more robust strategy can succeed over a larger range of possible values for non-quantified risk. This form of robust- ness analysis is often not undertaken in eradication program evaluations. The main non- quantified risk initially facing Australia’s fire ant eradication program was that the invasion had spread further than expected. Earlier consideration of this risk could have led to a more robust strategy involving a larger area managed in the program’s early stages. This strategy could potentially have achieved eradication at relatively low cost without significantly increasing known and quantified risks. Our findings demonstrate that focusing on known and quantifiable risks can increase the vulnerability of eradication programs to known but non-quantified risks. This high- lights the importance of including robustness to potentially large but non-quantified risks as a mandatory criterion in evaluations of inva- sive species eradication programs.

Open access PDF of the full original article: Click Here