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1. Introduction

CGE models are large systems of nonlinear equations. Intertemporal
CGE models are even larger since they must be solved over several time
periods, potentially spanning a very long time horizon. Direct search
methods are a poor solution choice for these large-scale CGE models
due to their lack of robustness and the resulting curse of dimensionality.
The secant or Newton iterative methods, which depend on a first-order
derivative matrix (either by symbolic or finite difference approxima-
tion), are therefore more practical choices for CGE solver software
packages. Finding a solution for CGE models, in other words, essentially
involves finding a way to handle and solve large first-order partial
derivative matrices.

Over the years, a number of good linear algebra packages have been
built and professional software packages have been constructed offering
dedicated solutions to CGE models, such as GEMPACK and GAMS.
Nevertheless, the growing size or dimension of CGE models, especially
intertemporal CGE models, remains a serious challenge for current
CGE solution methods.

This paper addresses this challenge by proposing a direct reordering
method for the first-order partial derivative matrices that arise from
CGE model solutions. The ordering method facilitates a parallel solution
and provides a substantial advantage in computational time and
memory use for the solution of intertemporal CGE models.
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Our contribution is also important in the way that it facilitates the
building of larger, more detailed intertemporal CGE models. The
lack of efficient solution methods has hindered the popularity of
intertemporal CGE models and where they are deployed the size of
the intertemporal components is usually sacrificed in favour of a finer
time grid and more precise solutions.

The organisation of the paper is as follows. In Section 2 we briefly
summarise the current literature on general equilibrium modelling
and its computational challenges. Section 3 details current methods
and the software available for the solution of CGE models. Section 4 dis-
cusses how the direct method can be made more efficient with a Singly
Bordered Block Diagonal matrix. Section 5 follows this logic and dis-
cusses how a Jacobian matrix of intertemporal CGE models can be
ordered into SBBD form. Section 6 presents numerical results for the
parallel solution of a CGE model based on our direct ordering method,
providing an example and comparator across solution methods of
an intertemporal and regional model of the Vietnamese economy.
Section 7 concludes.

2. Computable general equilibrium models and their computational
challenges

CGE models are a model of the economy as a whole, with multiple
agents (i.e., producers, consumers, government) interacting in different
markets. CGE models were originally built on the foundations of a
Walrasian General Equilibrium economy, and their computable proper-
ty relies on the uniqueness and stability of the Walrasian approach.
Practical CGE models can be represented and solved as non-linear pro-
gramming problems (see Dixon and Parmenter (1996)), however, we
find that most CGE models, in practice, are normally represented as
a system of nonlinear equations with the agents' (i.e., consumers,
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producers, etc.) optimization problems being solved analytically in the
form of demand and supply equations. The resulting nonlinear system
is calibrated with actual economic data and if the solution of the system
is unique and stable it can be found, in principle, by the convergence of
an iterative solution method such as the now ‘old fashioned’ Newton-
Raphson method.

The rapid increase in practical CGE modelling in the second half of
20th century was supported by the important work of Leontief
(1936), who introduced the first input-output table of the US economy.
The building of input-output tables was later facilitated by the introduc-
tion of the System of National Accounts in 1953 (Nations, 1953), and its
latest version in 2008 (EC et al., 2009) by the United Nations. The Sys-
tem of National Accounts has been gradually adopted by many coun-
tries since and provides the essential data for CGE modelling.

The model accepted by many CGE modellers as the first CGE model
was the multi-sector model of Norwegian economy by Johansen
(1960). The model had 22 production sectors and one representative
consumer. Johansen's (Johansen, 1960) model was the first economy-
wide model of separate agents (i.e., consumers and producers) instead
of through a single agent as in previous works (Dixon and Jorgenson,
2013). Johansen's (Johansen, 1960) contribution was not limited to
building the first multi-agent CGE model, he also proposed a single
step ‘linearization approximation’ solution method for CGE models.
The idea was to linearize the system of non-linear equations in an ap-
proach similar to finding a solution of a system of first-order Taylor-
series expansions of non-linear equations (see Section 3.1 for further
details). The method was later described by Dixon and Parmenter
(1996) as the ‘derivative approach’, to be distinguished with the ‘itera-
tive method’. The method has been further developed and used by
GEMPACK, a popular CGE solver package (see (Harrison and Pearson
(1996) and Dixon and Parmenter (1996))).

The second stream of CGE modelling, following Johansen (1960), be-
gins with the applied general equilibrium works by Shoven and
Whalley (1972, 1973), who used a search algorithm to compute the so-
lution for a Walrasian economy designed by Scarf (1967) and Scarf and
Hansen (1973). The idea of the numerical algorithm is to search for a
fixed point equilibrium of the Walrasian economy by creating a fine
grid of augmented price vectors on a unit simplex, moving from one
convex hull created by the points on the grid to another, until finding
the one convex hull that can represent the fixed point (see, (Scarf
(1967), Scarf and Hansen (1973), and Shoven and Whalley (1973))).
Although the algorithm is reliable and can find the fixed point in a finite
number of steps, it is not very efficient and has lost its popularity when
dealing with models capable of forecasting and answering practical
policy questions (Dixon and Parmenter, 1996).

In the latter quarter of 20th century, with the introduction of many
efficient CGE solver packages, the relatively inefficient single step solu-
tion approximation as well as Scarf's method was gradually replaced by
other more efficient solution methods, the GAMS's iterative method and
GEMPACK's linearisation method (see Section 3).

With the improvement in computing capacity the size of CGE
models is growing rapidly. Modern CGE software packages like
GEMPACK and GAMS are written in the form of matrix languages,
which define the model's dimensions as sets of goods, industries, house-
hold types, occupations, countries, and so on, over time. The size of
these inputs is limited only by the available input data. This enormous
increase in size and complexity poses many challenges for solution
packages.

Being built up from millions of static equations, the introduction and
use of dynamic CGE models poses even greater challenges to CGE model
solvers. There are some available shortcuts. The easiest treatment of
large multi-equation problems is to break down the dynamic CGE
models into several time segments, and solve them sequentially. Recur-
sive dynamic CGE models are used exactly for this purpose. Recursive
models assume each agent has static or myopic expectations, or that
they optimise their behaviour within one period only. The model is

divided into two components. First, a ‘within period’ static CGE model
is solved with myopic expectations. Second, the ‘between-period’
model is then solved by updating certain exogenous (or ‘within-period’
component) variables such as the capital stock, labour, and productivity
parameters. These exogenous variables connect within-period compo-
nents through time (Devarajan and Robinson, 2013; Scollay and
Gilbert, 2000). The size of recursive dynamic CGE model is therefore
much smaller than solving a multi-period model at once. The problem,
of course, is that agents are not being able to look forward in this setting.

In theory, a recursive model can be revised to incorporate for-
ward looking behaviour by guessing and employing a ‘shooting
method’ (Dixon et al., 1992, pp. 334-6). The model still can be solved
sequentially, but the number of adjustments (after each shot) can be
large. With practical CGE models involving hundred of industries,
the shooting method is proving to be computationally expensive
(Dixon and Rimmer, 2002). The MONASH (Dixon and Rimmer,
2002) model, a successor of ORANI model (Dixon et al., 1982), is a
typical example of a recursive model. This model later has been mod-
ified into a USAGE model and applied for the US economy by Dixon
and Rimmer (2004).

Unlike recursive treatments, intertemporal CGE models attempt to
solve multi-period settings directly. Intertemporal CGE is designed as
an extension of a static CGE model and often includes elements of neo-
classical growth theory (Devarajan and Robinson, 2013). Solutions for
intertemporal CGE models are based on stable saddlepath equilibrium
properties. For the model to be solved numerically, intertemporal mo-
tion equations are represented in finite difference form (see Dixon
etal. (1992), pp. 340-8). Finite differenced intertemporal equations, to-
gether with the intratemporal (intra-period) static CGE model and
steady state conditions, are then solved simultaneously to complete
the model. Solutions of intertemporal CGE models are computationally
demanding. Examples of intertemporal CGE models are the global
intertemporal model built by McKibbin (1987) and McKibbin and
Sachs (1991) and the intertemporal CGE model for Australian economy,
or ORANI-INT (Malakellis, 1998).

The purpose of our paper is to further tackle the numerical and
computational challenge of intertemporal CGE models. Even though
intertemporal CGE models have the advantage in allowing fully for-
ward looking behaviour, they are dimensionally very large, and
with the inclusion of multiple one-period static CGE equations,
they are difficult to solve without limiting assumptions. We propose
a method that allows part of these one-period static CGE models to
be solved in parallel, hence reducing computational time overall.
Our main contribution is to solve the first-order partial derivative
matrix of intertemporal CGE models in parallel, thus providing compu-
tational benefits to both the iterative and linearisation methods, as the
former needs to solve a first-order derivative matrix to update the
solution after each step and the latter needs to solve a matrix to
approximate a new solution.

3. Current software packages for CGE models and solution methods

There are three main software packages that are dedicated to solving
CGE models: GAMS, MPSGE, and GEMPACK (Horridge et al., 2013).
Since MPSGE is only a sub-system in GAMS, providing syntax to define
CGE models and preform some pre-processing work for GAMS, it's
best to think of only two main packages, GAMS and GEMPACK. Both
software packages have advantages and disadvantages in terms of
their solution methods for CGE models.

In addition to these two popular software packages that specialise in
solving more general CGE models, there are also other tailor-made
packages that are written to solve specific CGE problems. A typical
example of such a package is the MSG algorithm (McKibbin, 1987;
McKibbin and Sachs, 1991), which is used to solve MSG and G-CUBED
models (see McKibbin and Sachs (1991)). Although we will not be
able to compare our method with the MSG algorithm directly, because
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itis written to solve specific medium size models only [i.e., the G-CUBED
model employs 5000 equations over 100 years or half a million equa-
tions in total, see McKibbin and Wilcoxen (1999)], we review the algo-
rithm for the sake, at least, of finding any similarity with our direct
reordering solution approach.

3.1. The GEMPACK linearization method

GEMPACK employs four different solution methods: Johansen, Euler,
Gragg, and Midpoint (Harrison and Pearson, 1996). All the above
methods share the same property. They are linear approximations
with different extrapolation techniques. The GEMPACK solution method
can be represented simply as a first-order Taylor series expansion of a
vector of multivariate functions f(x, y) = 0:

frdx = fdy (3.1)

where x, y are a vector of endogenous and exogenous variables. The sys-
tem, given a point (xo, yo), is then shocked with a small deviation dy =
y1 — Yo. The solution for a given point x, after a small change or shock,
can be easily found by the inversion of matrix f;:

X1 =%+ f ' f,dy. (3.2)

The approximation is good for a small change in y, or simply, when
dy is small. When dy is large, which is usually the case, dy can be divided
into smaller steps: y changes from yq to y; then to y, ... to yn. The solu-
tion for x in these steps can be found by a recursive solution of the sys-
tem (i from 1 to N):

Xi:Xifl"‘f;]lx:xi_] fy‘x:xi_l dyi~ (33)
Y=Yi-1r Y=VYia

Thus, by dividing the shock yq to yy into smaller steps, we can obtain
a better approximation for x; and finally xy (see, Harrison and Pearson
(1996)).

The solution of a CGE model after a shock can be done with a 1 step
(or Johansen) method, and a 2 and 4 steps methods where solutions can
be denoted as x(1),x(2) and x(4). To enhance the precision we can form
the final solution as a Richardson extrapolation of, say, x(1), x(2) and
x(4) (named after Richardson (1911)).

Unlike iterative solutions, which refine the solution after each step,
the GEMPACK's linearization method allows the user to choose how
many steps can be performed, hence the user can have better control
over solution time and accuracy. Thanks to this feature, GEMPACK is
usually the fastest CGE solver available. But speed comes with a price,
in the sense that the user cannot guarantee that the solution obtained
from the linearization method converges. That said, GEMPACK does
provide results for simulation accuracy in terms of checks for
convergence.

To solve a (potentially large) first-order derivative matrix f !,
GEMPACK uses the direct serial solver HSL 2013's (HSL, 2013) MA48
(or MA28, depending on the user's choice). These solvers were written
in Fortran and have been using as a benchmark for other direct non-
symmetric linear solvers. Therefore, it is perhaps not surprising that
GEMPACK has proven to be the best performer [see Table 20.7 in
Horridge et al. (2013)] among the software packages available for CGE
modelling.

3.2. The GAMS's iterative methods

GAMS is a truly flexible system. It is designed for big optimization
problems. However, CGE models can also be solved easily in GAMS
using a dummy optimum function. In essence, GAMS uses a direct sys-
tem of equations solver to solve CGE models. The GAMS solvers that

are frequently used for CGE models are PATH, MILES or optimiser
MINOS (see, Horridge et al. (2013)).

PATH (Dirkse and Ferris, 1995) and MILES (Anstreicher et al., 1992)
are part of the GAMS Mixed Complementarity Problem solver that is
available with any GAMS system. The two solvers are similar although
PATH is faster and more robust than MILES (Billups et al., 1997). We
thus set MILES aside for our purposes. PATH is a Newton-based solver,
which updates the solution by solving the system involving a Jacobian
matrix of non-linear systems (Dirkse and Ferris, 1995). In our case, the
non-linear system is the CGE Model. In a way similar to GEMPACK,
and since the Jacobian matrices in CGE models are usually very large,
we are faced with the same challenge as GEMPACK. At its core, PATH
uses LUSOL (Gill et al., 1987), as a linear solver to solve the system of Ja-
cobian matrices. Since LUSOL is a serial direct linear system solver, it suf-
fers from the same disadvantages as MA48.

Unlike PATH and MILES, MINOS (see, Murtagh and Saunders (1982),
for a detailed description) is an optimisation solver, not a direct non-
linear system solver. An example of using a MINOS solver to solve a
CGE model is the CGE model for property tax analysis in Idaho (Julia-
Wise et al., 2002). Because MINOS is a nonlinear programming solver,
the CGE model can be represented as a system of non-linear constraints
and a dummy objective function can be formed to satisfy the MINOS
input requirements. A set of variables that satisfies all of the constraints
will be the optimum.

With nonlinear constraints, MINOS employs a projected Lagrangian
algorithm, which involves a sequence of major iterations. Each iteration
will require the solution of a linearly constrained sub-problem, which
contains linearized versions of the nonlinear constraints, or the Jacobian
matrix (Murtagh and Saunders, 1982). Solving the linearly constrained
sub-problems, in turn, requires solving a linear system involving a
Jacobian matrix. Again, MINOS uses LUSOL to perform this task.

3.3. The MSG algorithm

Unlike the above two software packages that try to solve CGE models
by inverting the entire first-order derivative matrices, the MSG algo-
rithm tries to exploit the special feature of intertemporal CGE models
to solve the problem faster. The algorithm has been described in detail
in McKibbin (1987) and McKibbin and Sachs (1991). Here, only a brief
discussion will be provided.

McKibbin (1987) and McKibbin and Sachs (1991) represent an
intertemporal CGE model as a system of nonlinear difference and non-
linear equations:

Xey1 = P1(Xe, e, Z¢, Er) (34)
Zt = LDZ(Xr,Ef,ZnEr) (35)
e = P3(Xe, e, Zt, Er) (3.6)

where X, e, Z,, E; are the state, jump, endogenous and exogenous vari-
ables respectively. To solve system, the first step involves a linearization
around some point, usually either the steady state or on the transition
path to steady state using a first-order Taylor expansion. The linearized
system will then become a system of mixed linear deference equations
and linear equations:

7(”1 = a1)7t + aye; + (132[ + G4Et (37)
Z[ = b])_([ + bye; + b3Z[ + b4E[ (38)
et = C])_([ + 6 + ng[ + C4Et (39)

where X;, &;,Z;, E; denote the deviation from linearisation point, and a;,
b;, ¢; are the first-order derivative matrices of d;.
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In the next step, the endogenous variables Z; will be substituted out
to condense the system into a system of linear difference equations
only, or:

)_(t+] = a’l)_(t +dye + a’3E (3]0)

[ :LJ]X[—‘,-C/zét-Q—C/gEr. (311)

The above linear system is solved by first assuming an arbitrary ter-
minal period T as a steady state, so that, according to Eq. (3.11):
er = HyrXy + HorEr (3.12)

where Hyt, Hyr are time sub-scripted matrices. Going back one period,
we can solve for ey _ ;:

HyrXt + HorEr = ¢1X1—1 + ¢2€7—1 + 3Er—; (3.13)

and substituting Eq. (3.10) into (3.13) and rearranging gives:

er—1 = Hir—1Xr—1 + Har—1Er—1 + CsrEr_. (3.14)
Repeating this exercise further we obtain:

& = H1X¢ + HyE¢ + Csp{Epi1...Er}. (3.15)

As designed, the jump variable will be a function of the current state
variable and (current and future) exogenous variables only. McKibbin
(1987) and McKibbin and Sachs (1991) repeat the above procedure
until Hy,, Ho; become independent from the choice of T, and the system
is then (as they claim) on a stable manifold. After the rule linking é; and
X is performed, the linear difference system can be solved forward for
any period t using the rule given by Eq. (3.15). The endogenous vari-
ables Z; can also be recovered once é; and X; have been found.

By separating the solution of intra-period variables (substituting
Z;) and inter-period variables (&, and X;) with a nicely designed dif-
ference equations solver, the MSG algorithm is expected to be faster
in solving an intertemporal CGE model than inverting large matrices
as in the case of GAMS and GEMPACK. However, the MSG algorithm
also has drawbacks: it is not a parallel solver and it has to rely on a
first-order Taylor expansion to approximate the solution. The accu-
racy of the algorithm is also in doubt when the system is highly non-
linear, although McKibbin and Sachs (1991) assure its accuracy for
the MSG model.

In summary, the GAMS solution method is based on an iterative
mechanism to find a solution (using either a direct nonlinear system
solver or a nonlinear programming solver). The number of iterations
needed to find a solution will depend on the specific problem to be
solved. The computing time, therefore, could be significantly higher
compared to GEMPACK, which limits the number of times the linear
system solver is employed by defining how refined are the solution
steps. In any case, it seems clear that convergence in GAMS is sound,
while in the GEMPACK convergence and the precision of the solution
depends on how small the shock will be as divided between solution
steps. Both packages, however, rely on a serial matrix solver in each so-
lution step to solve CGE models, hence will be inefficient with large
intertemporal CGE models. The MSG algorithm, on the other hand,
exploits the special feature of intertemporal CGE models to solve them
faster, but its accuracy is a concern as it relies on a first-order Taylor
expansion only.

3.4. Parallel solution
As we can see from the discussion above, solving CGE models using

either GEMPACK, GAMS or special purpose packages will involve solu-
tions of large linear systems. Solving them on a serial computer is

expensive both in memory usage and computing time. Parallel solutions
are simply the next best logic step.

The idea of a parallel solution for CGE models was first introduced
in GEMPACK version 10 (Horridge and Pearson, 2006). However,
GEMPACK only uses parallel processes to solve the same CGE
model with different shocks. That means every single solution of
the model must be carried out serially, and the method can thus
use only limited parallel resources to speed-up computation time
or enhance memory.

There are many software libraries available for parallel solutions
of large matrices, but none of the current CGE solver software pack-
ages are yet to employ parallel matrix solvers. This is due partly to
the fact that many current parallel solvers are not adequate for the
very large non-symmetric matrices produced by an intertemporal
CGE model. The available iterative solvers are also not reliable
while direct solver methods (e.g., the LU decomposition) cannot ef-
ficiently solve the curse of dimensionality. Current direct solvers de-
pend on matrix ordering packages to reduce the number of the ‘fill in’
elements in the factorisation phase of LU decomposition process in
order to overcome the curse of dimensionality. However, in many
cases the ordering phase consumes more memory and computing
time than the LU decomposition itself (Hu and Scott, 2005).

In this paper we show that the first order partial derivative matrix
derived from intertemporal CGE models can be transformed into SBBD
form directly. In addition, when we construct the matrix in this way
we can skip the matrix ordering phase. Most importantly, a special fea-
ture of the intertemporal CGE model allows a very efficient matrix or-
dering into SBBD form, which we show to be vital for efficient parallel
computing.

4. SBBD matrix and the direct method for solving linear systems

Solving a large matrix can be done by either a direct or iterative
method. While the direct method involves a LU decomposition of matri-
ces, the iterative method will refine the solution after a series of steps
that involve multiplication of sparse matrices and vectors, with no ma-
trix inversion. The iterative method has proven its advantages (with re-
strictions) in the symmetric case but is not robust for a general case. For
normal equations (i.e., non-symmetric equations), the method does not
guarantee success, especially in the case of a ‘poorly conditioned’ matrix
(see, for example, Saad (2003)).

The direct method, on the other hand, is more robust and more reli-
able in the general case. Nevertheless, the direct method requires much
more computing resources due to the ‘fill-in’ problem (i.e., the matrix to
be solved can be very sparse, but the lower and upper matrices can be
dense, where the extra elements in the lower and upper matrices that
are not presented in the sparse matrix are termed ‘fill-ins’). In this
case, the direct method requires more memory to store data and consid-
erably more time to compute. That why it is very important to study the
structure of the sparse matrix to reorder it into a form that requires less
‘fill-ins’ in the factorization step.

There are a number of ordering techniques available in the litera-
ture, for example, the Minimum Degree Ordering (see, for example,
(George and Liu (1989), Markowitz (1957), and Tinney and Walker
(1967))) and the Nested Dissection Ordering (see, for example,
George (1973)). There are also a number of useful reordering library
packages. But the reordering by itself is computationally expensive
and, as mentioned, in some cases outweighs the factorization step
(Hu and Scott, 2005). Therefore, reordering the matrix with prior
knowledge of its structure is preferable to using automated reordering
packages.

One possible way to reorder the sparse matrix for fast parallel
solving is to reorder the matrix in block diagonal form. Duff and Scott
(2004) proved that the sparse matrix problem can be effectively solved
in parallel by reordering it into SBBD form.
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Ordering a matrix into SBBD form is an ordering technique that reor-
ders the row and column of a matrix into the following form:

Ay G
Ay Cy

Ax  Ck

where A; (i € [1..K]) is a rectangular n; by m; (n; > m;) matrix and G; is n;
by L matrix. A; are block diagonal matrices and C; are border matrices. K
is the number of blocks in the matrix and the number of column in C;
(ie., L)is called a ‘netcut’. We consider only the case of square SBBD ma-
trix, hence Zfi]n,» = Zf(:]mi +L.

The linear equation system will have the form:

Ay G X1

b
A2 C2 X2 b;
1l 4.1
Ax Cx || Xk bz(

XL

where x; (i € [1..K]) are the vectors with length m;, x; has the length of L,
and b; are the vectors with length n;.

According to Duff and Scott (2004),' solving a linear SBBD system in-
volves factorisation, with forward and backward substitutions. Many
parts of the process can be done independently in parallel, using the fol-
lowing steps:

1) The factorisation: we first look at the sub-system
A () = 4.2
@ )y )=b (42)

where each of the sub-matrices (A;C;) will be partially decomposed
into the form:

war=r(f (% ¥a (43)

and where P;, Q; are row and column permutation matrices, L; and U;
are a lower and upper m; x m; square matrix, L; is (n; — m;) x m;is a
rectangular matrix, I is (n; — m;) x (n; — m;) an identity matrix, Uj is
m; x L a rectangular matrix, and S; is (n; — m;) x L local Schur com-
plement matrix.? The idea is to separate the block equation system
into two independent parts and solve them separately. Nevertheless,
because the local Schur complement matrix is not square (the num-
ber of variables x; is greater than the number of equations n; — m;),
we cannot solve for the partial solution immediately. Fortunately, all
partial Schur complement matrices (S;) can be combined together
into a square L x L interface matrix as we shall see in the next steps.
2) Forward elimination: with the above factorisation, in this second

step, we will use the factors to solve for a partial solution (g‘ ):
i

o(t 1))~ (8)

! The reader interested in further details should consult the original paper. We summa-
rise the solution method here for convenience.

2 To see why S; is a Schur complement matrix we use a simple common permutation
and partition of the block matrices, or:

A: A L U LA
ACH = P O ij \o.=p. (" i LAy .
(AiGi) I<Aji Ajj)Ql '(Ajiui 1 I) < Ajj*AjiUrlLF]Aij>Ql

ThenL; = A;U; ', U; = L 'Ajj and S; = A — A;Ui 'Li 'Ay is a Schur complement of Ay;, by
definition.

where y; and 15,- are the vectors of length m; andy; and b; are vectors of
length n; — m;. The above factorisation and forward elimination
steps can be done separately for each block matrices (A;(;), and
hence we can exploit a parallel computing resource here.

Solving the interface problem: before going to the backward substi-
tution step (Eq. (4.9) below), we have:

Ui 01‘) A(Xi> _ <in>
( Si & XL Vi
as we noted earlier, and because we know y; and y;, the backward
substitution Eq. (4.5) can be solved in two parts for x; and x; sepa-
rately. Because S; is rectangular with fewer rows than columns, we
can assemble all S; and y; together to form a complete interface prob-

lem. The above partial solutions y; together with partial Schur com-
plement matrices can be “summed up” to form a larger problem:

w
—~

(4.5)

Sxt=y, (4.6)
where S is L x L matrix.

The interface problem again can also be solved using a LU decompo-
sition of matrix S (S = PLUQs):

PsLszi =y, (4.7)

UsQsx, =2, (4.8)
because the interface problem will be solved serially, it is very im-
portant to keep the magnitude of L (i.e., the netcut) low.

Backward substitution: once x; is known, it can be substituted into
Eq. (4.5) to find the rest of the unknowns x;:

(UiUi) Qi (i;) =Y

Again, the backward substitutions of system i can be done indepen-
dently of each other, so that, again, parallel computing resources can be
employed here to shorten the computational time and memory usage.

All of the above procedures can be done easily with the current ‘state
of the art’ HSL parallel direct solver package HSL_MP48 (HSL, 2013), so
the real challenge is to reorder the first order partial derivative matrix of
an intertemporal CGE model into SBBD form, which we show in the next
section.

=

(49)

5. Intertemporal CGE model and SBBD form

A typical intertemporal CGE model can be represented in the
following form*:

pe=fpr.ze, M. Q) (5.1)
ze = k(pg, e, A, q) (5:2)
Ae = h(pe, 2, A, Q) (5.3)
q =28\, q) (54)

where p;, z; are vectors of intra-period variables, A; is a vector of
intertemporal variables, and q is the vector of those variables which
do not have a time index. We call Egs. (5.1), (5.2) intra-period equations
and Eq. (5.3) inter-period equations. Eq. (5.4) is called a ‘non-time equa-
tion’, which will not be repeated over time in the model or can be

— K
3 This is because_ (n;—m;) = L.
=

4 We will not consider the case of second or higher differential equations. Higher order
differential equations are rare in intertemporal CGE models, and especially for determin-
istic cases.
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explicitly assigned to any time period. An example of a non-time equa-
tion is an information equation, which has a sum of a variable (in z;)
over time or designates a variable with 2 different time periods on the
right hand side.

Note that p, and z, are different because of their involvement in non-
time equations. If a variable is a part of a non-time equation then we re-
order it to the right hand side of the matrix, as we shall see later.

In the finite difference form, the intertemporal CGE model can be
written as follows®:

Pe = f(Pe.ze,Ae. q) (5.5)
2z = k(pg, 2, M, q) (5.6)
Aey1—Ae = h(pg, ze, e, q) (5.7)
q=28(z\t,q) (5.8)

or more compactly:

0= f'(pr,2t, M\, q) (5.9)
0=k (0, 2t,A\e, Q) (5.10)
0 =h'(p.ze, A, Aes1, Q) (5.11)
0=g"(z,\0.q). (5.12)

The first-order partial derivative matrix is:

P R A
1 1 1 1
kpr kzt k)\r hq
h, hy o hy hg
0 g & &

It is easy to see that the first column of the first-order partial
derivative matrix

can be reordered to form disjoint (intra-period) diagonal blocks
(A;, i€ [1..K] asin Eq. (4.1)) and the columns

R
kzll qu hq
n.ohl R
& & &

can form a joined border part C;, i € [1..K] as in Eq. (4.1). In order to
accomplish this, we reorder both variables and equations. With proper
ordering steps we can form the vector of unknowns according to the fol-
lowing order: (po,....0T, Z0s--+»21: No»---AT: q), Where py, z; and A, are
vectors of all intra-period and intertemporal variables at t € [0..T], so
that the part of first-order partial derivative matrix corresponding to
vector (Zo,....Z1, Ao,...,Ar, ) will form the border.” With the equations
also ordered by time and with non-time equations distributed into the

5 This is mostly for simplicity in coding. We find non-time equations rare, and we can
order any variable to the right hand side of the matrix (classified as z;) with the same so-
lution algorithm, noting that the interface problem will be larger.

6 Eq. (5.7) can take the form of a forward or backward difference equation depending
onwhether A is a stock or jump variables. We write the equation in this form for simplicity.

7 Because there is no assumption about the shape of the border part C;, ordering
(20....,zT, \O,...,\T, q) is not necessary.

lowest (after final time T) part, the first order matrix will be directly
transformed into a SBBD matrix. For completeness, the vector of vari-
ables should be divided into two parts: endogenous and exogenous
parts (with exogenous variables, the number of equations will be less
than the number of variables) and the first-order partial derivative ma-
trix should also be partitioned into two corresponding matrices f, and f,
as in Eq. (3.2). The task can be done easily by dropping exogenous ele-
ments in the variables vector while keeping the order of the remaining
endogenous elements. The first-order partial derivative matrix should
also be partitioned accordingly. The dropped variables will form a vec-
tor of exogenous variables. Their order is not important as long as it is
kept in line with the new partitioned f, matrix, since we will only be in-
terested in fidy as in Eq. (3.2).

Note that the reason why the joined border part cannot form a dis-
jointed part in the diagonal is because either they contain both non-
zero partial derivatives with respect to A, and A; ;. 1, or a no-time
indexed equation cannot be part of the intra-period blocks, which
have time subscripts. As stated above, partial derivatives with respect
to variables in no-time equations (z;) also cannot be part of diagonal
blocks.

The SBBD matrix can be easily solved by a parallel direct solver
package HSL_MP48 (HSL, 2013) as indicated in Section 4. Note, however,
that even though our approach and the MSG algorithm are different,
intuitively they share much in common. The factorisation and forward
elimination steps in the LU decomposition of SBBD matrices (Section 4)
are similar to the elimination of endogenous variables in the MSG
algorithm, while the interface problem solution is, in a sense, equivalent
to iterative solution of condensed difference equations in the MSG
algorithm. In both methods, the special feature of intertemporal CGE
models has been exploited to solve them faster. By employing parallel
computing resources to do the factorisation, along with the forward and
backward eliminations, our method will be even more efficient.

6. Numerical analysis

The model we examine here is an regional intertemporal model for
the Vietnamese economy (Ha and Kompas, 2009). The model was de-
veloped from a single country ORANI model (Dixon et al., 1982). The
ORANI model was originally built for the Australian economy, but lately
has been applied to many country with its latest version of ORANI-G
(Horridge, 2003).

The model can be varied from 3 to 28 commodities and industries,
with intra-temporal and intertemporal blocks, and has 3 agents in
every region of the country's eight regions: a consumer, a producer
and a government. In every region and within each period of time
(i.e., anintra-temporal block), the model replicates ORANI-G's structure,
where each household and government forms demands as a combina-
tion of Constant Elasticity of Substitution (CES) and Stone-Geary func-
tions. On the production side, output is produced from intermediate
inputs and factors of production (i.e., capital, labour, and land) in a com-
bination of Leontief and CES production functions. Output is then sold
within the region, to other regions or abroad. Household income is ob-
tained from possession of labour and productive factors, while the
government's income is from taxes and duties. General equilibrium
will be ensured through market clearing conditions: goods produced
in one region are equal to the demand for that good in other regions
and from abroad, and demand equals supply for all productive factors.
An intertemporal block includes three components: (1) producers max-
imise the value of the firm in the long run subject to a capital accumula-
tion equation; (2) consumers maximise utility in the long run subject to
a per capita debt level; and (3) a set of financial equations link money
with the price level, and a version of the uncovered interest rate parity
condition links exchange rate movements with the difference between
domestic and international interest rates.

The model uses an illustrative inter-regional Input-Output database
of Vietnamese economy. The database has been described and
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constructed for a more elaborate intertemporal CGE model in Ha and
Kompas (2009) for the year 2005 and updated to the year 2007 in
[see,] Thang et al. (2011), for a description of the updated database.

To test the performance of the solution methods, we solve the above
model with different aggregate levels and different finite difference
grids. We increase the size of model from 3 commodities by 3 industries
to 28 commodities by 28 industries. At the same time we also vary
the number of discretization intervals from time zero to the steady
state from 10 to 50. Because we represent differential equations in
discretization from, the higher the number of intervals the more precise
is the solution of the model. The same model will thus expand from a
few hundred thousand variables into a huge system with more than
32.7 million endogenous variables (see Table 1).

The numerical test is done using a software package developed at
the Australian Centre for Biosecurity & Environmental Economics, at
the ANU Crawford School of Public Policy. The package is designed spe-
cifically to solve large intertemporal CGE models in a parallel computing
environment. The package relies on HSL's MP48 (HSL, 2013) package to
solve a large SBBD matrix in parallel. The parallel matrix manipulation,
transformation and representation are carried out using PETSC (Balay
et al., 1997, 2013, 2014). All computational experiments in the paper
has been carried out on a MacBook Air 2012 model with dual processors
and 8 gigabyte of RAM as the leading computer and 3 other slave com-
puters (see Appendix A for details).

6.1. Graphical representation of the direct ordering technique

Fig. 1 represents the “un-ordered” matrix with a conventional
variables-by-variables and equations-by-equations ordering method.
The figure is a graphical representation of the first-order partial deriva-
tive matrix f, (as defined in Eq. (3.2)) with “un-ordered” variables and
equations. Red, blue and cyan represent positive values, negative values
and zero elements on the matrix diagonal. Off diagonal zero elements
are not coloured. The matrix drawing function is from PETSC (Balay
et al., 1997, 2013, 2014). According to the figure, the matrix is clearly
unstructured and will require ordering techniques before any factoriza-
tion stage can be carried out. Fig. 2, alternatively, represents the matrix
re-ordered by our proposed technique. Since we use prior knowledge to
reorder the matrix, the reordered matrix is very stable (i.e., a low row
difference between blocks) and has a small netcut.

6.2. Comparing the ordering techniques

To test the numerical performance of the direct ordering method, we
compare it against a conventional reordering package HSL_MC66 (HSL,
2013). With small models, HSL_MC66 performed well in having a small-
er netcut compared to our direct method. That said, the MC66 still can
never dominate over our direct method in row difference because our
intertemporal model has nearly an identical structure over time and
the direct method exploits this fact. In any case, when the model
grows in size, the automatic reordering method starts to quickly lag be-
hind our direct method. More importantly, as we have discussed earlier,
the ordering package requires substantial memory to perform its oper-
ation, and since it is serial, when the model size passes 26 millions var-
iables it fails to allocate enough memory to even reorder the matrix. Our
direct method, on the other hand, does not require much more memory

Table 1
Model descriptions.

- 2
AN =
™ A
\\\\ —
g =

\
L '-":._—_-‘ ::\

Fig. 1. The matrix without ordering. Source: Author's calculation.

than that needed to store the matrix itself, hence we can manage to
reorder a 32.7 million by 32.7 million sparse matrix to pass to the
factorisation step (see Table 2).

6.3. The size of intertemporal CGE models and serial computing time

The ordering methods are very important for the matrix LU decom-
position, and the LU decomposition should begin with a prediction of fu-
ture elements in the LU factor matrices (the ‘fill-ins’). With proper
ordering techniques, the number of ‘fill-ins’ could be minimised and
therefore the efficiency of the decomposition method will be enhanced.
Keeping this in mind, our first experiment is to compare the serial
solution methods to show the efficiency of the ordering techniques.

We will compare the numerical performance of the direct method
reordering with the HSL_MC66 package and also compare its perfor-
mance with the conventional serial LU decomposition method MA48.
The matrix solver packages are HSL_MP48 and MA48 from the HSL
library (HSL, 2013).

Results from Table 3 show the clear advantage of our direct ordering
method, even though no parallel resources were employed. The direct
method + HSL_MP48 out-performs HSL_MC66 + HSL_MP48 in every
model. Especially for larger models, when the model's size exceeds 26
million variables (Model ID No. 4), HSL_MC66 + HSL_MP48 failed
(due to insufficient memory in ordering stage), while the combination
of direct ordering method and HSL_MP48 solver solves the model in
just 8.7 min.

When we compare the direct ordering method with the convention-
al serial MA48 solution method (without prior re-ordering), the effi-
ciency of our method is also striking. The MA48 method outperforms

ID Model size Number of endogenous variables Number of exogenous variables Number of non-zeros
1 3 sectors, 3 commodities, 8 regions and 10 time periods 246,833 55,467 779,466
2 3 sectors, 3 commodities, 8 regions and 50 time periods 1,144,433 257,067 3,614,846
3 8 sectors, 8 commodities, 8 regions and 50 time periods 5,720,368 1,298,272 16,806,197
4 28 sectors, 28 commodities, 8 regions and 20 time periods 26,422,686 7,944,170 70,680,341
5 28 sectors, 28 commodities, 8 regions and 25 time periods 32,713,851 9,841,409 87,392,893

Source: Author's calculation.
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Table 3
Calculation time (in sec.).

ID  HSL_MC66 + HSL_MP48

Direct reordering + HSL_MP48

MA48

1.130868
7.569205
58.688180
Failed
Failed

(S, B SN OURY SR

0.536218
2.580329
28.676437
523.388481
673.380096

0.296910
4.385017
126.969160
1790.043886
3786.980331

Fig. 2. The reordered matrix. Source: Author's calculation.

our method with small models (Model 1) due to overhead computa-
tional cost. With lager models, however, our method clearly performs
better, with computational time reduced by nearly 6 times in the case
of Model 5, or 11.2 min computational time in comparison with more
than an hour.

6.4. Parallel computing performance

The advantage of the direct ordering method is even further en-
hanced when parallel computing resources are employed. To test the
performance of the parallel solution we solve models 1 to 5 mobilising
4-10 processes in 1 to 4 machines over a network (see columns 2-5
in Table 4). The machines are typical working machines which can be
found in nearly any office (3 Dell computers and a MacBook Air, see
Appendix A for details). The performance of the parallel computing plat-
form is clearly far better than that with serial computing (column 4,
Table 3).

Even using multicores in the same computer, the performance of the
parallel solution is better than the serial solution. Column 2 of Table 4
shows that with 3 processes employed, we can cut 40% of the comput-
ing time over that of serial solution in the case of the Model 5 (see
also column 3 of Table 3).

Given the fact that computers on the network have to connect with
each other by cable and through a network switch, the network com-
puters do not have an advantage over machines with the same core.

Table 2
Matrix ordering.

Source: Author's calculation.

Notes: (1) All numerical experiments are carried out with a MacBook Air (see Appendix
A). (2) All numerical experiments are carried out with a Johansen one step simulation
(see for example (Pearson (1991) and Dixon et al. (1992))). (3) Time is counted for the
linear system (matrix) solution only.

However, this disadvantage will be offset when more processes are
being employed. When 4 processes are mobilised, the computing time
for Model 5 is cut further down by half (in comparison with the serial
computation time), and the computing time reaches its best perfor-
mance when 10 processes are employed (see columns 3-5 of Table 4).
Computation time is now 4-5 min to solve Model 5 in comparison
with more than an hour using the conventional serial solution method
without our direct reordering method. This is a significant improve-
ment. Computational efficiency will even be further enhanced in a
(GEMPACK style) multi-step solution, which is needed if we want a
more accurate solution.

In general, and as discussed earlier, the HSL_MP48 package will solve
each of the diagonal and border blocks separately, followed by the inter-
face matrix, and a ‘backward solving’ for the rest of unknowns. The size
of interface matrix will decide the efficiency of the method. Given the
stable structure of our intertemporal CGE model the interface matrix
does not grow as fast as the first-order derivative matrix itself, with its
denser finite difference grid. Only variables that enter in the border sec-
tion will have extra elements when the time grid increases. This, in es-
sence, allows us to solve a much larger model more efficiently in
parallel.

6.5. Accuracy of finite difference methods in intertemporal CGE models

Intertemporal CGE models require a solution to both intra- and
inter-period equations. The inter-period equations are usually the for-
ward-backward differential equations, for which the finite difference
method is always the best choice [see, for example,] Dixon et al.
(1992). For the finite difference method, which is the case in our numer-
ical experiment, it is crucial that the finite difference step is as small as
possible. When the models satisfy regularity conditions, the numerical
solution of the finite difference method will converge to the true solu-
tion as the finite difference steps go to zero. We could also vary the
size of steps between the initial and end point (in time) to get accept-
able accuracy with smaller grid size (see Dixon et al. (1992)).

To get an idea of how step size affects the numerical solution we
draw a graph of GDP change in Model 1 with an assumed technological
shock under different finite difference grid sizes. The solution method is

Table 4
Parallel computing performance (in sec.).

ID No. of blocks Netcut

Row difference’

HSLMC66 Direct reordering

HSL MC66 Direct reordering

1 1 595 719 0.01% 0.00%
2 51 3011 3359 1.01% 0.00%
3 51 26,563 7399 62.94% 0.00%
4 21 Failed 9579 Failed 0.00%
5 26 Failed 11,909 Failed 0.00%

ID 3 processes on

4 machines and 4 4 machines and 6 4 machines and 10

machine 1 processes processes processes
1 0.341564 0.455525 0.397198 0.314949
2 1.880380 2.076181 1.693513 1.548978
3 20.477740 16.883149 12.873069 12.470178
4 354.354870 222.596670 207.515911 170.984501
5 407.100470 324.550223 283.381909 274.561792

Source: Author's calculation.

T Row difference is (Mpyax — N/B)/(N/B) x 100, where my,q is the largest number of row
in ablock, N is the total number of rows, and B is the number of blocks (see (Hu and Scott,
2005)).

Source: Author's calculation.

(1) Numerical experiments are carried out with a MacBook Air and 3 Dell computers (see
Appendix A). (2) All numerical experiments are carried out with a Johansen one step sim-
ulation (see for example (Pearson (1991) and Dixon etal. (1992))). (3) Time is counted for
the linear system (matrix) solution only.
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Fig. 3. The finite difference grid and calculation accuracy (% change in GDP). Source:
Author's calculation.

Gragg with 2-4-8 steps (Dixon et al., 1992; Pearson, 1991) and the time
horizon is 150 years. Although with a proper variation in grid steps
(i.e., higher density in initial periods), the errors between different
grid sizes can be minimised, the denser grid usually provides better re-
sults. Fig. 3 shows a clearly inaccurate solution when the number of pe-
riods (grid size) is limited to 10. The solution, in other words, is not
smooth when it is supposed to be, that is, when agents in the economy
are smoothing out investment and consumption. For more than 20 pe-
riods solutions tend be likely solution candidates with GDP levels grad-
ually and smoothly increasing toward the steady state over time.

However, the more periods we include in the numerical solution, the
larger the intertemporal model will be. In our case, with only 3 sectors
and 3 commodities, the number of endogenous variable increases
from as little as 250 thousand endogenous variables (and equations)
to more than a million variables, while the grid size increases from 10
to 50 periods. Clearly, parallel solutions will be essential to achieve effi-
ciency in computational time.

7. Concluding remark

From our numerical experiments, the direct reordering method of
the first-order derivative matrix of intertemporal CGE models into
SBBD form is shown to be very efficient in solving intertemporal CGE
models in parallel. The saving in computational time and memory re-
quirements is substantial, allowing researchers to solve larger scale
CGE models more quickly and accurately. The efficiency of the method
will vary depending on the size of the interface problem. Researchers
can try to substitute out q to reduce this problem. Nevertheless, with
the rest of the interface matrix depending only on inter-period variables
A, it size will increase moderately (in comparison with the entire
model's size) as the finite grid size increases. Our method thus proves
to be the best and most practical approach to solving intertemporal
CGE models in parallel.
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Appendix A. Hardware configuration
The parallel computing exercises are carried out with 4 computers:

1. MacBook Air 2012 with Intel® Core™ i7-3667U CPU @ 2.00 GHz x 4,
500 GB SSD.

2. Dell Optiplex 745 with Intel® Core™ 2 CPU (6400@2.13 x GHz), 2 GB
of RAM, 200 GB Hard disk.

3. Dell Optiplex 755 with Intel® Core™ 2 (E6550@2.33 x GHz), 2 GB of
RAM, 200 GB Hard disk.

4. Dell Optiplex 755 with Intel® Core™ 2 Quad (Q6600@2.4 GHz x 4),
4 GB of RAM, 200 GB Hard disk.

The network device is a TP-LINK TL-SG1008D Gigabit switch.

Appendix B. Software

Table B.5
The list of software and libraries used in the numerical simulation.

Name Version  Source

Operating system Ubuntu 14.04 http:www.ubuntu.com

Compiler GCC 4.8.2 http:gcc.gnu.org

Message passing interface MPICH2  3.04 http:www.mpich.org
Matrix manipulation Petsc 344 http:www.mcs.anl.govpetsc
Matrix solver HSL! 2013 www.hsl.rl.ac.uk

Note: 'Subpackages used: HSL_MP48, MA48,HSL_MC66.
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